Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
N Engl J Med ; 385(24): 2264-2270, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1560911

ABSTRACT

Inherited junctional epidermolysis bullosa is a severe genetic skin disease that leads to epidermal loss caused by structural and mechanical fragility of the integuments. There is no established cure for junctional epidermolysis bullosa. We previously reported that genetically corrected autologous epidermal cultures regenerated almost an entire, fully functional epidermis on a child who had a devastating form of junctional epidermolysis bullosa. We now report long-term clinical outcomes in this patient. (Funded by POR FESR 2014-2020 - Regione Emilia-Romagna and others.).


Subject(s)
Epidermis/transplantation , Epidermolysis Bullosa, Junctional/therapy , Keratinocytes/transplantation , Transduction, Genetic , Transgenes , Cell Self Renewal , Cells, Cultured/transplantation , Child , Clone Cells , Epidermis/pathology , Epidermolysis Bullosa, Junctional/genetics , Epidermolysis Bullosa, Junctional/pathology , Follow-Up Studies , Genetic Diseases, Inborn/pathology , Genetic Diseases, Inborn/therapy , Genetic Therapy , Genetic Vectors , Humans , Keratinocytes/cytology , Keratinocytes/physiology , Male , Regeneration , Stem Cells/physiology , Transplantation, Autologous
2.
Acc Chem Res ; 54(23): 4283-4293, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1521679

ABSTRACT

After decades of extensive fundamental studies and clinical trials, lipid nanoparticles (LNPs) have demonstrated effective mRNA delivery such as the Moderna and Pfizer-BioNTech vaccines fighting against COVID-19. Moreover, researchers and clinicians have been investigating mRNA therapeutics for a variety of therapeutic indications including protein replacement therapy, genome editing, and cancer immunotherapy. To realize these therapeutics in the clinic, there are many formidable challenges. First, novel delivery systems such as LNPs with high delivery efficiency and low toxicity need to be developed for different cell types. Second, mRNA molecules need to be engineered for improved pharmaceutical properties. Lastly, the LNP-mRNA nanoparticle formulations need to match their therapeutic applications.In this Account, we summarize our recent advances in the design and development of various classes of lipids and lipid derivatives, which can be formulated with multiple types of mRNA molecules to treat diverse diseases. For example, we conceived a series of ionizable lipid-like molecules based on the structures of a benzene core, an amide linker, and hydrophobic tails. We identified N1,N3,N5-tris(3-(didodecylamino)propyl)benzene-1,3,5-tricarboxamide (TT3) as a lead compound for mRNA delivery both in vitro and in vivo. Moreover, we tuned the biodegradability of these lipid-like molecules by introducing branched ester or linear ester chains. Meanwhile, inspired by biomimetic compounds, we synthesized vitamin-derived lipids, chemotherapeutic conjugated lipids, phospholipids, and glycolipids. These scaffolds greatly broaden the chemical space of ionizable lipids for mRNA delivery. In another section, we highlight our efforts on the research direction of mRNA engineering. We previously optimized mRNA chemistry using chemically-modified nucleotides to increase the protein expression, such as pseudouridine (ψ), 5-methoxyuridine (5moU), and N1-methylpseudouridine (me1ψ). Also, we engineered the sequences of mRNA 5' untranslated regions (5'-UTRs) and 3' untranslated regions (3'-UTRs), which dramatically enhanced protein expression. With the progress of LNP development and mRNA engineering, we consolidate these technologies and apply them to treat diseases such as genetic disorders, infectious diseases, and cancers. For instance, TT3 and its analog-derived lipid-like nanoparticles can effectively deliver factor IX or VIII mRNA and recover the clotting activity in hemophilia mouse models. Engineered mRNAs encoding SARS-CoV-2 antigens serve well as vaccine candidates against COVID-19. Vitamin-derived lipid nanoparticles loaded with antimicrobial peptide-cathepsin B mRNA enable adoptive macrophage transfer to treat multidrug resistant bacterial sepsis. Biomimetic lipids such as phospholipids formulated with mRNAs encoding costimulatory receptors lead to enhanced cancer immunotherapy.Overall, lipid-mRNA nanoparticle formulations have considerably benefited public health in the COVID-19 pandemic. To expand their applications in clinical use, research work from many disciplines such as chemistry, engineering, materials, pharmaceutical sciences, and medicine need to be integrated. With these collaborative efforts, we believe that more and more lipid-mRNA nanoparticle formulations will enter the clinic in the near future and benefit human health.


Subject(s)
Drug Carriers/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , RNA, Messenger/chemistry , Animals , Benzamides/chemistry , Biomimetic Materials/chemistry , Communicable Diseases/immunology , Communicable Diseases/therapy , Disease Models, Animal , Genetic Diseases, Inborn/immunology , Genetic Diseases, Inborn/therapy , Humans , Mice , Neoplasms/immunology , Neoplasms/therapy , Phospholipids/chemistry , RNA, Messenger/metabolism , RNA, Messenger/therapeutic use , Untranslated Regions , Vitamins/chemistry
3.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: covidwho-1323263

ABSTRACT

Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.


Subject(s)
Gene Transfer Techniques , Genetic Diseases, Inborn/therapy , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Nanoparticles/administration & dosage , Animals , Genetic Diseases, Inborn/genetics , Genetic Vectors/genetics , Humans
4.
Signal Transduct Target Ther ; 6(1): 177, 2021 05 14.
Article in English | MEDLINE | ID: covidwho-1298834

ABSTRACT

Rapid development of vaccines and therapeutics is necessary to tackle the emergence of new pathogens and infectious diseases. To speed up the drug discovery process, the conventional development pipeline can be retooled by introducing advanced in vitro models as alternatives to conventional infectious disease models and by employing advanced technology for the production of medicine and cell/drug delivery systems. In this regard, layer-by-layer construction with a 3D bioprinting system or other technologies provides a beneficial method for developing highly biomimetic and reliable in vitro models for infectious disease research. In addition, the high flexibility and versatility of 3D bioprinting offer advantages in the effective production of vaccines, therapeutics, and relevant delivery systems. Herein, we discuss the potential of 3D bioprinting technologies for the control of infectious diseases. We also suggest that 3D bioprinting in infectious disease research and drug development could be a significant platform technology for the rapid and automated production of tissue/organ models and medicines in the near future.


Subject(s)
Bioprinting/trends , Genetic Diseases, Inborn/therapy , Printing, Three-Dimensional/trends , Biomimetics/trends , Drug Development/trends , Drug Discovery/trends , Humans , Tissue Engineering/trends
6.
Am J Med Genet A ; 182(12): 2841-2846, 2020 12.
Article in English | MEDLINE | ID: covidwho-866017

ABSTRACT

The coronavirus disease 2019 (COVID-19) emerged in early 2020 and since, has brought about tremendous cost to economies and healthcare systems universally. Reports of pediatric patients with inherited conditions and COVID-19 infections are emerging. Specific risks for morbidity and mortality that this pandemic carries for different categories of genetic disorders are still mostly unknown. Thus, there are no specific recommendations for the diagnosis, management, and treatment of patients with genetic disorders during the COVID-19 or other pandemics. Emerging publications, from Upper-Middle Income countries (UMIC), discuss the recent experiences of genetic centers in the continuity of care for patients with genetic disorders in the context of this pandemic. Many measures to facilitate the plan to continuous genetic care in a well-developed health system, may not be applicable in Low and Middle Income countries (LMIC). With poorly structured health systems and with the lack of established genetic services, the COVID-19 pandemic will easily exacerbate the access to care for patients with genetic disease in these countries. This article focuses on the unique challenges of providing genetic healthcare services during emergency situations in LMIC countries and provides practical preparations for this and other pandemic situations.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Genetic Diseases, Inborn/therapy , Health Services Accessibility , Pandemics , COVID-19/complications , Delivery of Health Care , Developing Countries , Emergency Medical Services , Genetic Diseases, Inborn/complications , Humans , Risk
7.
Am J Med Genet A ; 185(1): 68-72, 2021 01.
Article in English | MEDLINE | ID: covidwho-855991

ABSTRACT

The national importance of telemedicine for safe and effective patient care has been highlighted by the current COVID-19 pandemic. Prior to the 2020 pandemic the Division of Genetics and Metabolism piloted a telemedicine program focused on initial and follow-up visits in the patients' home. The goals were to increase access to care, decrease missed work, improve scheduling, and avoid the transport and exposure of medically fragile patients. Visits were conducted by physician medical geneticists, genetic counselors, and biochemical dietitians, together and separately. This allowed the program to develop detailed standard operating procedures. At the onset of the COVID-19 pandemic, this pilot-program was deployed by the full team of 22 providers in one business day. Two physicians remained on-site for patients requiring in-person evaluations. This model optimized patient safety and workforce preservation while providing full access to patients during a pandemic. We provide initial data on visit numbers, types of diagnoses, and no-show rates. Experience in this implementation before and during the pandemic has confirmed the effectiveness and value of telemedicine for a highly complex medical population. This program is a model that can and will be continued well-beyond the current crisis.


Subject(s)
COVID-19/epidemiology , Delivery of Health Care/organization & administration , Endocrinology/organization & administration , Genetics, Medical/organization & administration , Models, Organizational , Pandemics , Telemedicine/organization & administration , Adolescent , Adult , Child , Child, Preschool , Delivery of Health Care/methods , Delivery of Health Care/standards , Endocrinology/education , Female , Genetic Counseling/methods , Genetic Counseling/organization & administration , Genetic Counseling/standards , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/therapy , Genetic Testing/methods , Genetic Testing/standards , Genetics, Medical/education , Humans , Implementation Science , Infant , Infant, Newborn , Internship and Residency/methods , Internship and Residency/organization & administration , Internship and Residency/standards , Male , Metabolic Diseases/epidemiology , Metabolic Diseases/therapy , Middle Aged , Patient Safety , Pilot Projects , Program Evaluation , Telemedicine/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL